inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

J. Kończyk,^a P. Demchenko,^b* R. Matvijishyn,^b V. Pavlyuk^b and B. Marciniak^a

^aInstitute of Chemistry and Environment Protection, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland, and ^bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya Street 6-8, 79005 Lviv, Ukraine

Correspondence e-mail: demchenko@franko.lviv.ua

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{Ni-Si}) = 0.001 \text{ Å}$ R factor = 0.025 wR factor = 0.057 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

i4

Erbium nickel disilicide, ErNiSi₂

Single crystals of ErNiSi₂ were synthesized from the corresponding elements by arc melting. The ternary intermetallic compound crystallizes in the orthorhombic space group *Cmcm* and adopts the CeNiSi₂ structure type [Bodak & Gladyshevskii (1969). *Kristallografiya*, **14**, 990–994], with all four crystallographically unique atoms in special positions of site symmetry m2m.

Comment

Ternary intermetallics of rare earth metals with the general formula *RETX*₂ (where *RE* is a rare earth metal, *T* is a transition metal and *X* is a *p*-block element) crystallize mostly in 23 structure types (Parthé *et al.*, 1993–1994), *viz.* monoclinic NdRuSi₂, CeCoC₂ and LaCuS₂, orthorhombic CeNiSi₂, YIrGe₂, LuMnGe₂, ZrCrSi₂, CeRhGe₂, TbFeSi₂, LaTmIr₂Ge₄, LuNiSn₂, NdAgAs₂, MgCuAl₂, NdNiGa₂, CeRhSn₂ (Niepmann *et al.*, 1999), ScRhSi₂, ScFeSi₂, CeNiC₂, ScCoC₂ and LuRuB₂, and tetragonal HfCuSi₂, ScCoC₂ and LaRhC₂.

The *RETX*₂ phases have been the focus of special attention due to their interesting magnetic and electrical properties, *e.g.* the Kondo effect. An accurate determination of the crystal structure for phases of this composition is a basic requirement for the better understanding of their physical properties. The existence of the phase ErNiSi₂ was first reported by Bodak & Gladyshevskii (1969) who, on the basis of X-ray powder diffraction data, established that the crystal structure adopts the orthorhombic CeNiSi₂ structure type. Analogous results were obtained by Gil *et al.* (1994). In these investigations, information about structural data (atomic coordinates, displacement parameters) was not presented. Thus, it seemed appropriate to determine completely the crystal structure of ErNiSi₂, and we present these results here.

ErNiSi2 adopts the CeNiSi2 structure type (Bodak & Gladyshevskii, 1969). A clinographic projection of the unitcell contents is shown in Fig. 1. The coordination around Er (site symmetry m2m) consists of 21 atoms, if bonding interactions are considered for distances < 4.0 Å, resulting in an $[ErSi_4Ni_4Si_6NiEr_6]$ polyhedron (Fig. 2*a*). The coordination polyhedron around the Ni atom (site symmetry m2m) is a monocapped tetragonal antiprism, [NiSi₅Er₄], made up of 4 Er atoms in one basal plane with a capping Si atom, and 4 Si atoms in the second basal plane, if bonding interactions are considered for distances < 3.1 Å (Fig. 2b). The coordination polyhedron around atom Si1 (site symmetry m2m, bonding interactions < 3.1 Å) is a tricapped trigonal prism, [Si1Ni-Si₂Er₆], with one additional Ni and two Er atoms as capping atoms (Fig. 2c). The coordination polyhedron around atom Si2 (site symmetry m2m, bonding interactions < 3.1 Å) is a distorted cuboctahedron, $[Si2Ni_4Si_4Er_4]$ (Fig. 2d).

Received 1 December 2005 Accepted 2 December 2005 Online 7 December 2005

Figure 1

A clinographic projection of the $\rm ErNiSi_2$ unit-cell contents, with displacement ellipsoids drawn at the 95% probability level.

The interatomic distances (Table 1) are in good agreement with the sums of the atomic radii (Emsley, 1991). The shortest distance with the highest deviation (93% of the sum of the atomic radii) is observed between Ni and Si atoms, with an Ni-Si distance of 2.255 (3) Å.

Experimental

The single crystal used in this work was extracted from an alloy with nominal composition $Er_{23}Ni_{27}Si_{50}$, which was prepared by arc melting of the initial components (purity better than 99.9%) in an electric arc furnace with a water-cooled copper bottom (Ti-getter) under an argon atmosphere, and annealed at 870 K. A preliminary crystal-lographic investigation was performed using Laue and rotation methods (RKV-86 and RGNS-2 chambers, Mo K\alpha radiation).

Crystal data

ErNiSi ₂	Mo $K\alpha$ radiation
$M_r = 282.15$	Cell parameters from 1017
Orthorhombic, Cmcm	reflections
a = 3.9423 (9) Å	$\theta = 4.9-32.7^{\circ}$
b = 16.502 (3) Å	$\mu = 40.49 \text{ mm}^{-1}$
c = 3.9319 (9) Å	T = 295 (2) K
V = 255.79 (9) Å ³	Plate, metallic light grey
Z = 4	$0.21 \times 0.19 \times 0.04 \text{ mm}$
$D_x = 7.327 \text{ Mg m}^{-3}$	
Data collection	
Oxford Diffraction Xcalibur3 CCD	281 independent reflections
area-detector diffractometer	280 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.039$
Absorption correction: analytical	$\theta_{\rm max} = 32.7^{\circ}$
CrysAlis RED (Oxford	$h = -5 \rightarrow 4$
Diffraction, 2005)	$k = -24 \rightarrow 23$
$T_{\min} = 0.002, \ T_{\max} = 0.199$	$l = -5 \rightarrow 5$

Figure 2

The coordination polyhedra around (a) the Er atom, (b) the Ni atom, and (c) and (d) the Si atoms. Er atoms are blue, Ni atoms green and Si atoms red.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.057$ S = 1.33281 reflections 18 parameters $w = 1/[\sigma^2(F_o^2) + (0.023P)^2 + 5.5174P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 4.29 \ \text{e} \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -2.85 \ \text{e} \ \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97} \\ \text{(Sheldrick, 1997)} \\ \text{Extinction coefficient: 0.0048 (7)} \end{array}$

Table 1 Selected interatomic distances (Å).

Er-Si1 ⁱ	2.9899 (10)	Ni-Si1	2.255 (3)
Er-Ni ⁱⁱ	3.0178 (6)	Ni-Si2 ^{vii}	2.3110 (15)
Er-Si2 ⁱⁱⁱ	3.090 (2)	Ni-Si2 ^{iv}	2.3202 (15)
Er-Si1 ^{iv}	3.100 (2)	Si1-Si1 ^{viii}	2.358 (3)
Er-Er ^v	3.9319 (9)	Si2-Si2 ^{ix}	2.7840 (5)
Er-Er ^{vi}	3.9423 (9)		

 $\begin{array}{l} \mbox{Symmetry codes: (i) } -x - \frac{1}{2}, -y + \frac{1}{2}, -z; (ii) -x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1; (iii) x + \frac{1}{2}, y - \frac{1}{2}, z; \\ (iv) & x - \frac{1}{2}, y - \frac{1}{2}, z; \\ (v) & x, y, z - 1; \\ (vi) & x - 1, y, z; \\ (vii) & -x, -y + 1, -z; \\ (viii) & -x, -y + 1, -z + 1; \\ (ix) & -x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1. \end{array}$

Atomic coordinates were standardized using the *STRUCTURE*-*TIDY* program (Gelato & Parthé, 1987). The highest maximum residual electron density is 1.06 Å from atom Si1 and the deepest hole is 0.65 Å from the Er atom.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2004); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

References

Bodak, O. I. & Gladyshevskii, E. I. (1969). Kristallografiya, 14, 990-994. (In Russian).

Brandenburg, K. (1999). *DIAMOND*. Version 2.1e. Crystal Impact, Bonn, Germany.

1025 measured reflections

Emsley, J. (1991). *The Elements*, 2nd ed. p. 251. Oxford: Clarendon Press. Gelato, L. M. & Parthé, E. (1987). *J. Appl. Cryst.* **20**, 139–143.

- Gil, A., Szytula, A., Tomkowicz, Z., Wojciechowski, K. & Zygmunt, A. (1994).
- J. Magn. Magn. Mater. **129**, 271–278. Niepmann, D., Pöttgen, R., Künnen, B. & Kotzyba, G. (1999). Chem. Mater. **11**,
- 1597–1602, Jones Alia CCD, Varsion 1 170, Oxford Diffraction
- Oxford Diffraction (2004). *CrysAlis CCD*. Version 1.170. Oxford Diffraction Ltd., Abingdon, Oxford, England.
- Oxford Diffraction (2005). *CrysAlis RED*. Version 1.171. Oxford Diffraction Ltd., Abingdon, Oxford, England.
- Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993–1994). TYPIX - Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. In Gmelin Handbook of Inorganic and Organometallic Chemistry. Heidelberg: Springer.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.